MyArch Solutions

Autobuild User Guide

Version 2.1 for Vangent/EFAST?2 Project

4/20/2009

Contents

FAXUL o] oYU Fo I @e g TN] - o o [SRR 3
Ta I =] LT oY= YU 1 o] oYU 11 o RSP USR 3
INStAllatioN Prer@QUISITES.....iiiiciiiee ettt e e s e e et ae e e s aar e e e e aaeeeeratreeesnnaeeas 3
AutobUild INStAllation STEPS ...vvviiiciiiee et e e e e e e et e e e eeata e e e e rreeeens 4
N3V 0o g Lol =] o) £ P S PP PP PP P U PP PP PPPUPTNN 4
AUutobUIld COMMANG LINE ...eiiiiiiiiiie ettt sttt 4
AV YUL] oYU] o N 2 LU 1] o 1T Y TS 5
Build Artifacts and TEMPOrary FIlESoccuiei ittt vee e e are e e e 6
Environment CoNfigUIatioNcoocuiiiiiiiiec et e e e e e e re e e e abe e e e enree e e ennes 6
LOCAl ENVIFONMENTtiitiiiiiitieiieriteee ettt ettt be e sbe e sbeesaeesanesate s et saneenseeneeneens 7
Dependency ManagEMENTuii i iiieeeciee e ettt e eeirr e e e sbeeeesare e e esabaeeeeabaeeesasseeeenssaeeesasasesansteeeennsens 7
Handling of Inter-Project DEPENAENCIESccccuviiiiiiiiiee et et e e et e e e eare e e arae e e raeas 7
SUPPOIT FOr WESB IMeEIatioNSvviiiiiiiieecciiee et ettt estr e e et e e et e e eaa e e e eaaa e e e saseeeennsaeeeennaees 8
Building and Deploying WESB Mediationscceciieiiiiiiiecciee et svee e esvtee e evee e e eavne e e 8
Building WESB Mediations from Project Interchange Files (PIF)cc.eeeeeieeeeiieee e 8
Updating IMmports/EXPOrts BINAINGScccuieiiieiiieieiiieeceeectee ettt estteeeteeeeteeeeane e eaveesbeseaaeeennas 8
Updating Promoted SCA ProPertiEsccvieeecieeeiiiieeeciieeeceiee e eette e e eitee e e erre e s esaveee s esaaeeeeenneeas 10
Support for WebSphere AppliCation SEIVENc.ueii it e 10

Autobuild User Guide Page 2

Autobuild Configuration
Autobuild configuration files reside in two directories:

e abconfig - This directory contains settings that are not environment-specific, such as
location of WESB binaries.

e envconfig - This directory contains environment-specific properties, such as host and port of
deployment manager for different environments.

Autobuild's code is located in autobuild-<version number> directory. This directory should not
have any project-specific settings.

"abconfig" must contain the file "ab.config.properties". This file defines global configuration
settings. There could also be an optional file "ab.local.config.properties" with configuration
settings local to the host where Autobuild is installed.

In addition to properties defined in abconfig and envconfig, any project could have a property
file "ab.build.properties" (stored in the project's root directory). This property file specifies
project-specific properties.

Autobuild loads its configuration property files in the following order:

e Project-specific ab.build.properties (if exists).

e "ab.local.config.properties" from "abconfig" (if exists).

e "ab.config.properties" from "abconfig".

e Environment configuration files from "envconfig", as described in the section "Environment
Configuration".

A property that is loaded first always takes precedence. E.g., a property defined in
"ab.local.config.properties" will take precedence over the property with the same name defined
in "ab.config.properties".

It is recommended to always use Unix forward slash notation when specifying paths in property
files or on the command line.

Installing Autobuild

Installation Prerequisites

e Apache Ant 1.7 or later.

e For building WESB mediations, WESB 6.2 must be installed on the machine. WID is not
required.

Autobuild User Guide Page 3

e |BMJDK 1.5. If WESB is installed, you can use the JDK that comes with this product.
Otherwise, you need to copy a JDK from any WAS 6.1 installation. Note that JDK 6 that
comes with WID 6.2/RAD7.5 is not currently supported.

Full WAS installation is not required to be able to use Autobuild.
To install Ant, follow these steps:

e Download the Apache Ant zip from Apache Ant website and unzip it.

e Navigate to Control Panel -> System -> Advanced -> Environment Variables -> System
Variables and set ANT_HOME variable to point to the directory that Ant was unzipped to,
e.g., c:\devtools\apache-ant-1.7.1. Also, make sure that you have JAVA_HOME defined and
that it points to IBM's JDK

e Navigate to Control Panel -> System -> Advanced -> Environment Variables -> System
Variables; edit the “Path” variable to add %ANT_HOME%\bin.

e Verify the Ant installation by running “ant -version” from the command line (from any
folder). You should see version 1.7.0 or later.

Autobuild Installation Steps

e Checkout autobuild-2.1, abconfig, envconfig and was-thin-admin-client-6.1 folders from
\Development\utilities in Version Manager

e Define environment variable AUTOBUILD CONFIG_HOME and point it to the location of
abconfig folder.

e Add autobuild-<version>\bin to the Path environment variable.

e Navigate to abconfig and copy sample_ab.local.config.properties to
ab.local.config.properties. Since every host configuration could be somewhat different,
"ab.local.config.properties" file itself is not stored in VM.

e Edit serviceDeploy.install.dir to point it to WESB installation on your machine.

e Check the value of JAVA_HOME environment variable on your machine. If it does not exist
or if it points to a Sun JDK, add "ibm.jdk.home" property to ab.local.config.properties and
point it to the IBM JDK that is part of WESB installation, e.g.,
ibm.jdk.home=/wid62/runtimes/bi_v62/java

e To verify installation, run "ab about" from command line (from any directory).

e If Autobuild is being installed on a developer's workstation, configure local deployment
environment as described later in the document.

Key Concepts

Autobuild Command Line
Autobuild runs on top of Apache Ant, so the format of Autobuild's commands is the same with
Ant. Autobuild comes with a batch file "ab.bat" which is used to bootstrap the build.

Autobuild User Guide Page 4

Therefore, the format of an Autobuild command is "ab <target> <one or more properties>". As
with Ant, properties are passed using "-D" notation, e.g.,

ab clean build -Denv=dev.was
Properties provided on the command line always override properties defined in property files.

As with Ant, you can run verbose mode using "-v" option which is useful for troubleshooting.

Key Autobuild Build Targets

Autobuild provides following build-related targets:

e compile. Compiles Java code.

e test. Runs "local" unit tests, i.e., the ones not requiring deployment to a container.
e package. Creates deployable unit (jar, war, ear or zip).

e deploy. Deploys a deployable unit to an application server. Depends on "package".
o test.deployed. Run soapUl of WebTest Canoo tests against a deployed application.

e build. Run all of the above targets.
Not all targets are available for all projects. For example, WESB mediation projects do not

support "compile".
Full list of targets is available from "ab help" command.

Build targets might also be defined differently for different project/deployable unit types. For
example, "package" target for a Web application will produce a "war" file whereas the same
target for a POJO project will produce a jar.

Autobuild determines how to build a project based on the project's artifacts. For example, a
presence of WEB-INF/web.xml file would indicate that this is a Web application, therefore
Autobuild will use its web app building component. The result of this analysis is stored in the
generated build file (build.xml) which is available from "build_gen" directory under the project's
root.

Various administrative targets, such as WAS-related targets described later in this document, do
not require project analysis and so they are executed right away.

By default, Autobuild runs the build in the current directory which is supposed be the project's
root folder. This directory must contain Eclipse .project and .classpath files.

It is also possible to explicitly specify the directory using project.dir property, e.g.,

ab build -Dproject.dir=HelloWorld/HelloWorldWeb

Autobuild User Guide Page 5

Build Artifacts and Temporary Files
There are many files that get created during the build process. These files include class files, jar,
war and ear files, testing reports.

Autobuild saves all these artifacts in the "build" directory. By default, this directory is created in
the current directory. The only exception is the build of WESB/WPS SCA modules (e.g.,
mediations) which uses a non-standard directory for temporary and build files. The directory's
location is "../ab_wpsbuild/<project name>". In other words, it is a level above the project's
directory. This is done in order for WID not to pick up temporary build files. WID automatically
includes all files from the project folder into the project.

It is recommended to periodically delete build directory. This is done using "clean" target.

Environment Configuration

To be able to deploy an application into an environment, Autobuild needs to know some
information about this environment. For example, host and port of the deployment manager
are two parameters that have to be specified for every environment.

Groups of properties pertaining to the same environment are referred to using an environment
name, such as "dev.was" or "dev.esb". The environment name can be passed to Autobuild on
the command line using "env" property, e.g., "ab build -Denv=dev.was"

In EFAST's case each environment correspond to a WAS cell, hence logical "dev" environment is
split into "dev.was" and "dev.esb" physical environments.

The environment parameters are defined using regular Ant properties. The properties can be
specified in one or more property files. The property files must reside in "envconfig" directory.

Autobuild loads environment properties at the beginning of the build process, right after the
application's ab.build.properties file was loaded.

The list of property files for each environment is specified using a special property in the format
"<env name>.env filelist". This is a simple comma-delimited list. ".properties" can be omitted
from file names. All paths are relative to the "envconfig" directory.

For example, "dev.esb" environment is defined as following:

dev.esb.env.filelist=dev.esb.env

These special properties must be defined in "env.metadata.properties” file also stored in
"envconfig".

Currently each EAFST environment is configured using exactly one file.

Autobuild User Guide Page 6

Environment configuration files contain mostly WAS-related properties. Key properties include
wasadmin.host, wasadmin.port, wasadmin.user, wasadmin.password. For the full list of
properties, please refer to "wasadmin_help.html" file available from "doc" directory in autobuild
installation.

Local Environment

Local environment refers to WESB or WAS installation on a developer's workstation. Properties
for local environment are specified in the local.env.properties. Since potentially each installation
could have different ports and user name/passwords, this file is not checked in. Instead, there is
a property file call "sample_local.env.properties". Developers have to re-name this file into
"local.env.properties" and make necessary changes.

To make "local" environment the default, add "env=local" property to ab.local.config.properties.
Otherwise -Denv=local has to provided on the command line

Dependency Management

Handling of Inter-Project Dependencies

Very often a project depends on another project for compilation and packaging. For example, a
WESB mediation could depend on an SCA library. A Web application could require a build of a
utility project that has to be packaged as a jar under WEB-INF/lib. These dependencies are
specified in .project file. In Eclipse they are configured using "Project References". In WID they
are specified using "Dependencies" screen.

Autobuild extracts this information from .project file and attempts to find the referenced
projects. Autobuild does not use project location information from Eclipse workspace.

To find a referenced project, Autobuild first checks if there is a <project name>.project.dir Ant
property defined, e.g., Util.project.dir. This property could be defined in ab.config.property. The
value of this property is used as the project location.

If the property is undefined, Autobuild will search for the referenced project on the filesystem
the level above the current project. It will look for the directories containing .project file with
the right name.

If the project is not found, Autobuild will raise an exception.

Autobuild User Guide Page 7

Support for WESB Mediations

Building and Deploying WESB Mediations
You can build and deploy WESB mediations either directly from the source of from project
interchange files.

To build/deploy a WESB mediation from the source, navigate to the project directory and run
the following command:

ab <target> -Denv=<target environment>
Following are the available targets:

e package - Run WESB serviceDeploy command to create deployable EAR file

e deploy - Deploy EAR file to the target environment. Includes running "package". Note that
the

o test.deployed -Run soapUl tests against previously deployed application. soapUl files must
reside in <project root>/soapuitest

e build - Run package, deploy, test.deployed.

e clean - delete all temporary build files.

e update.sca - Update import bindings and promoted properties based on the properties
defined in the environment file.

For example, to run build and deployment for DEV, run this command:
ab clean deploy -Denv=dev.esb

Building WESB Mediations from Project Interchange Files (PIF)

Targets for building WESB mediations from PIFs are the same with the ones described in the
previous section. You need to provide the location of the PIF file using "project.zip" property. If
this property is set, Autbuild will unzip the PIF file as well as other PIFs located in the same
directory and then run the build. Autobuild needs to unzip all files (not just the one specified by
"project.zip") in order to be able to find inter-project dependencies.

Example:

\efast\Development\ESB\MediationPIF>ab package -Dproject.zip=IFILEFilingExportimportMediation

Updating Imports/Exports Bindings

Autobuild is capable of changing configuration parameters of SCA exports/imports either as part
of the application deployment or using "update.sca" target. The most obvious usage for this
function is to change import endpoint for Web services bindings depending on the target
environment. Non-web services binding types are supported as well. For example, you can use
this feature to update JMS import's destination.

Autobuild User Guide Page 8

To understand exactly what parameters can be updated, please refer to IBM WESB/WPS
InfoCenter:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.websp

here.wps.620.doc/doc/gref commands.html

There are several 'modify<..>Binding' commands listed on this page. Click on the link for the
command for the specific binding type, e.g., modifySCAImportWSBinding or
modifySCAImportHttpBinding. You can update any parameter listed under "Parameters" on the

page, except for "moduleName", "import", "export", "applicationName". E.g., "endpoint" is the

parameter that can be updated for Web services imports.

The syntax for specifying the parameter's value is the following:
<AppName>.<ModuleName>.sca.binding.<BindingName>.<ParameterName>=<new value>
Where:

e AppName - name of the application containing SCA modules. By default, the name is
created by appending "App" to the WID's project name, e.g., StockQuoteApp. You can find
out the exact name from WAS admin console.

e ModuleName - name of the SCA module. It always coincides with the project name in WID.

e BindingName - name of import or export as defined in WID. This is the name that appears
on the assembly diagram.

e ParameterName - name of the parameter that will be updated, e.g., "endpoint"

Note that this syntax is independent of the binding type. Autobuild will determine the binding
type based on the provided application name, module name and binding name.

Example:
StockQuoteApp.StockQuote.sca.binding.RealtimeService.endpoint=http://myhost/bar

For endpoint changes, Autobuild supports special parameter "baseURL". When this parameter is
specified, Autobuild will updated only the "base" portion of the URL, i.e., prototocol://host:port.
The resulting endpoint will be created by appending the path of the existing endpoint to the
value of baseURL parameter.

For example, if an endpoint is currently set to http://myhost:8080/bar/baz and you supplied
"http://newhost:8090" using "baseURL", Autobuild will set the endpoint to
"http://newhost:8090/bar/baz".

Here is an example of a "baseURL" property:

StockQuoteApp.StockQuote.sca.binding.RealtimeService.baseURL=http://newhost:8090

Autobuild User Guide Page 9

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.websphere.wps.620.doc/doc/gref_commands.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.websphere.wps.620.doc/doc/gref_commands.html

The advantage of using "baseURL" is that you don't need to specify fully-qualified URL for each
import, only host and port.

Note that during application deployment Autobuild updates only the bindings of the application
being deployed.

"sca.update" targer, however, will updated bindings according the defined properties
irrespective of the application. If a binding is not found, it will raise an error.

Updating Promoted SCA Properties
SCA properties can be updated much the same way with import/export bindings.

To update a SCA property, define an Autobuild property using the following format:
<AppName>.<ModuleName>.sca.property.<PropertyName>=<value>
"PropertyName" is the name of the promoted SCA property.

During application deployment Autobuild updates only the SCA properties of the application
being deployed.

"sca.update" command, however, will use all promoted SCA properties irrespective of the
application. If a property is not found, it will raise an error.

Support for WebSphere Application Server

Autobuild provides several deployment and WAS administration targets:

e deploy.to.was - Deploys EAR or WAR file or a group of files. This target is different from
"deploy" target explained earlier as it does not depend on building an application.

e bounce.app - Restart a currently deployed application.

e check.servers -Check "health" of application servers in a cell

e bounce.servers -Restart application servers in a cell

Each target supports a number of configuration properties. For example, "deploy" allows to
specify a classloader order for an application using " was.classloader.mode". A property can be
supplied on a command line or specified in a property file, such as "ab.build.properties".

For example:
ab deploy.to.was -Dxar.file=HelloWorldWeb.war -Dwas.classloader.mode=PARENT_LAST

For a complete list of properties and their descriptions, please refer to "wasadmin_help.html"
file available from "doc" directory in autobuild installation.

Autobuild User Guide Page 10

You can also use "wasadmin.help" target to obtain the same information dynamically, for
example:

ab help.wasadmin -Dhelp.topic=check.servers

Autobuild User Guide Page 11

	Autobuild Configuration
	Installing Autobuild
	Installation Prerequisites
	Autobuild Installation Steps

	Key Concepts
	Autobuild Command Line
	Key Autobuild Build Targets
	Build Artifacts and Temporary Files

	Environment Configuration
	Local Environment

	Dependency Management
	Handling of Inter-Project Dependencies

	Support for WESB Mediations
	Building and Deploying WESB Mediations
	Building WESB Mediations from Project Interchange Files (PIF)
	Updating Imports/Exports Bindings
	Updating Promoted SCA Properties

	Support for WebSphere Application Server

